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a b s t r a c t

This paper presents a multi-criteria master production scheduling approach as the final assembly of
special purpose machines is known to be very cost intensive. These costs are mainly influenced by the
master production schedule (MPS). Two major cost drivers arise. First, long assembly lead-times (up to
several months) combined with high product values result in high capital commitments; thus, lead-
times need to be minimized. Moreover, the factory calendar must be considered while calculating the
MPS because the factory calendar can significantly influence the resulting lead-times. Second, contractual
penalties and compensation costs arise if confirmed delivery dates cannot be kept. Therefore, resource
requirements must be accounted for, and an MPS that is executable on the assembly shop floor must be
calculated. To increase planning flexibility, we do not restrict the resource utilization with a formal
constraint; instead, we introduce the additional objective of resource leveling. Consequently, the
conflicting objectives lead-time minimization and resource leveling are integrated into a single objective
function, in which the decision maker's preferences are represented by a weighting factor. To calculate
such an MPS, we develop a tailor-made construction heuristic combined with a randomized variable
neighborhood descent procedure. We evaluate our solution method by solving small instances with a
commercial solver and large-scale instances from an application case of an aerospace company. Our
results reveal that the decision maker's preferences are adequately reflected by the weighting factor.
Moreover, we can provide a rule of thumb for selecting an appropriate initial weighting factor.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The master production scheduling problem addressed in this
paper is based on an application case that originated in the
aerospace industry. As many German machine and plant manu-
facturers have done, the company has reacted to the challenges
resulting from globalization and changed market relations by
individualizing and segmenting its products and services. The
company now offers complex, customer-specific top-level pro-
ducts (also called special purpose machines) for certain markets.
To provide customer-specific products within competitive delivery
times, special purpose machines are manufactured using an
assemble-to-order (ATO) strategy, whereas the assembly itself is
organized as a series production. This ATO strategy and several
characteristics of the product and assembly process make the final
assembly the main focus of interest in achieving two fundamental
goals: cost reduction and customer satisfaction. The effect of the
final assembly on these two goals can be explained in two ways.
First, long assembly lead-times (up to several months) combined

with a high product value (up to several million Euros) lead to high
capital commitments. The long assembly lead-times result from a
high level of manual assembly effort, which is driven by the use of
cutting-edge technology and the high complexity of the product.
Second, the final assembly is directly linked to customer delivery
and thus has a direct impact on customer satisfaction.

According to Vieira and Favaretto (2006), master production
scheduling (also called master planning (MP); Rhode and Wagner,
2008) “[…] is a key decision-making activity, in which strategic goals
from business planning are translated into an anticipated statement
of production, from which all other schedules at lower levels are
derived”. The importance of MP becomes obvious when the inter-
dependencies with other planning tasks in a hierarchical production
planning system (HPPS) are analyzed, as affirmed by several authors
(e.g., Vollmann et al., 2005; Rhode and Wagner, 2008). According to
these authors, MP is the basic input for dependent planning tasks,
such as capacity planning, production planning and scheduling,
distribution and transport planning, sales planning, order promising
or purchasing, and material requirements planning. The importance
of MP is also noted in several publications on customer-oriented
individual production and ATO, such as Drexl et al. (1994), Franck
et al. (1997), and Hans et al. (2007).

The general task of MP that is pertinent to this paper is the
determination of a master production schedule (MPS). An MPS is a
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temporal framework that coordinates dependent planning tasks
and the flow of materials. On the basis of this function and the
characteristic planning environment of special purpose machinery,
we define the determination of assembly start and completion
dates for assembly orders as the basic task of MP. In contrast to
other approaches concerning MP, we do not integrate additional
planning tasks, such as material requirements planning, into our
analysis because the required information is not available at the
time of planning.

As MP has such an important coordination function and “the
objective function drives the logic behind the execution” (Vieira
and Favaretto, 2006), both fundamental goals must be represented
by the planning objectives. In terms of cost reduction, an opti-
mized MPS can influence capital commitments. Cost reduction is
primarily achieved through lead-time minimization. Concerning
the planning problem at hand, the lead-time can only be improved
if factory calendars (also called break calendars; cf. Trautmann,
2001) significantly influence the planning result. This influence is
important for the underlying MPS problem and also other sche-
duling problems, such as “[…] real-life projects, make-to-order
production, or process flows in the chemical industries, […]”
(Neumann et al., 2003). Generally, scheduling with break calen-
dars is termed calendarization (introduced by Zhan (1992)) and is
addressed, for example, by Schwindt and Trautmann (2000) and
Franck et al. (2001). Calendarization contributes to customer
satisfaction because shorter assembly lead-times reduce customer
delivery times. Other significant cost factors are contractual
penalties and compensation costs, which are directly linked to
the second goal of customer satisfaction, particularly the objective
of high delivery reliability. As customer satisfaction cannot be
directly influenced by MP (confirmed delivery dates do not exist at
the time of planning), resource leveling is defined as a surrogate
objective. The purpose of resource leveling is to support the
operability of the MPS on the assembly shop floor and thus to
enable on-time delivery. Moreover, resource leveling allows work-
force adjustment costs to be reduced or even completely avoided.
To address these conflicting objectives, namely, lead-time mini-
mization and resource leveling (the conflict will be discussed in
the following sections), we developed a multi-criteria master
production scheduling approach.

As the following section will show, the existing literature does
not sufficiently address the problem at hand; therefore, a new
planning approach is required.

2. Literature review

Capital commitments are one of the main cost drivers in the
production of special purpose machinery; thus, their reduction is
the primary objective of MP. However, these costs are directly
linked to work-in-process inventory costs, and they are very
difficult to assess because of the vast number of materials and
their time of assembly. Therefore, an operational surrogate objec-
tive is used: lead-time minimization (or throughput time mini-
mization – cf. Pinedo, 2009). In the literature, many different
criteria are used to evaluate lead-time performance. Examples
include the sum of (weighted) lead-times, mean (weighted) lead-
time, maximal lead-time, sum of deviations, and mean deviations.
Note that the first two criteria listed are pairwise equivalent. In
addition, the maximal lead-time criterion is not suitable because
only orders with long net lead-times would be affected by the
optimization. Moreover, to our knowledge, no comprehensive
study comparing these objectives exists; thus, no objective is
claimed to be superior to the others. As a consequence, the
suitable criterion depends on the specific problem and the
decision maker's preferences. In this paper, the objective of lead-

time minimization is represented by a lead-time deviation criter-
ion that is equivalent to minimizing the mean lead-time.

The objective of resource leveling (also called resource balan-
cing or resource smoothing) has gained increasingly more atten-
tion in recent years (cf. Anagnostopoulos and Koulinas, 2010;
Drótos and Kis, 2011; Gather et al., 2011). Comprehensive intro-
ductions to this topic can be found in Younis and Saad (1996),
Neumann and Zimmermann (1999), Caramia and Dell'Olmo
(2006), and Ballestín et al. (2007). Anagnostopoulos and Koulinas
(2010) state that the “[…] scheduling objective of resource leveling
is to make the resource requirements as even as possible over the
entire project horizon, usually, without explicit resource consid-
erations to be taken into account”. This statement is consistent
with Drótos and Kis's (2011) statement that “in resource leveling
problems the objective is to minimize a function of the resource
utilization over time”. Typically total squared utilization costs are
minimized to achieve balanced resource utilization (Gather et al.,
2011). Neumann and Zimmermann (1999) analyze the suitability
of three different objective function classes for projects with
minimum and maximum time lags. Following these contributions
and the requirements of the underlying planning problem, we use
a criterion defined as the root (“normalized”) of the sum of
squared deviations from a desired value to balance resource
utilization. This function is used because it explicitly penalizes
strong deviations.

Concerning conflicting objectives, a vast number of methods to
solve conflicts exist in the literature (introductions, overviews, and
details of these methods can be found e.g., in Gupta et al. (1991),
Dyer et al. (1992), Keeney et al. (1993), Kirkwood (1997), Belton
and Stewart (2002), Hoogeveen (2005), Figueira et al. (2005), or
T'kindt and Billaut (2006)). Here, the challenge is to evaluate the
different methods of multi-criteria decision analysis, multi-criteria
decision making, multi-objective decision making (MODM), or
multi-attribute decision making (MADM) with regard to their
applicability and suitability for the given decision problem.
As the number of general topics about decisions with multiple
objectives suggests, this challenge may be substantial. A tentative
guideline for method selection is given in Guitouni and Martel
(1998). A first distinction can be made by the determination of
alternatives (problem solutions). As an explicit determination of
(discrete) alternatives is not applicable for the problem at hand,
only methods with an implicit determination are of interest (this
type of method is often categorized as an MODM method and is
also called multiobjective programming (MOP); cf. Ehrgott and
Gandibleux, 2000). One can also distinguish between methods
where the (final) decision is made a posteriori or a priori. The a
posteriori methods are based on a set of compromise solutions
and their attributes (MADM; sometimes also called generate-first–
choose-later or construction and exploitation methods). Some a
posteriori methods are outranking-based methods or methods
based on multi-attribute utility/value theory (cf. Dyer, 2005). The a
priori methods have a single compromise solution, and the
decision maker specifies his preferences concerning the objectives
before solutions are calculated; thus, his preferred compromise
solution is already specified. Some commonly used a priori
methods are hierarchical optimization (also called lexicographical
ordering), objective dominance, objective weighting, and goal
programming.

With regard to the planning problem at hand, we use a MODM/
MOP-based approach that integrates the lead-time minimization
and resource leveling objectives into a single objective function.
This objective function consists of two components (one for each
of the objectives) that each measure deviations (similar to the goal
programming approach) and normalize the deviations by adjust-
ment factors (cf. Vieira and Favaretto, 2006). After normalization,
the objective function combines the deviations additively and
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introduces a weighting factor to represent the decision maker's
preference between the two objectives (as performed by the
objective weighting approach). We use this a priori method
because selecting the most suitable solution from a large set of
solutions is a difficult and time-consuming task (Korhonen, 2005,
also comes to this conclusion). This problem is exacerbated by the
difficulty of interpreting resource leveling objective values without
visualization. In this context, the weighting factor incorporates
some aspects of more interactive solution methods, as it enables
the decision maker to evaluate several purposefully calculated
MPSs, with minimal planning effort. This approach is also pre-
ferred by the responsible manager at the aerospace company.

To solve the resulting planning problem, solution methods that
address resource leveling are analyzed. Concerning the application
of a suitable solution method, Fink and Voß (2003) conclude that
the effectiveness of heuristics vitally depends on three character-
istics of the problem at hand: problem size, intended solution
quality, and available computation time. Furthermore, they stress
the need to transfer the findings from the literature to “decision
support systems dealing with real world problems” (see Fink and
Voß (2003)).

Only a few publications outline exact approaches for resource
leveling, such as the works by Easa (1989) and Bandelloni et al.
(1994). The former introduces a linear programming approach that
minimizes the deviations from an average resource level.
Bandelloni et al. (1994) propose a dynamic programming approach
for their resource leveling problem that minimizes the squared
deviation from the average resource utilization. The work of Rieck
et al. (2012) provides a comprehensive overview of such methods.
Gather et al. (2011) conclude that exact methods are only suitable
for small problem instances with 10–15 tasks; therefore, there is a
body of literature concerning heuristic approaches for resource
leveling (further details can be found in the literature cited above).
Here, the work of Ballestín et al. (2007) is worth mentioning. They
propose a population-based iterated greedy algorithm in a make-
to-order manufacturing environment that is capable of solving
instances with up to 1000 tasks.

Because of the complexity of the planning problem at hand, we
require a method that can solve virtually any size of problem as
well as the ease of use. Thus, the metaheuristic variable neighbor-
hood search (VNS) forms the basis of our proposed solution
method. VNS is a metaheuristic that “exploits systematically the
idea of neighborhood change, both in the descent to local minima
and in the escape from the valleys which contain them” (Hansen
and Mladenović, 2005). In contrast to other local-search-based
methods, VNS explores neighborhoods of increasing distance from
the current incumbent solution. VNS jumps from this solution to a
new solution in the case of an improvement. The main advantage
of this procedure is that if “many variables are already at their
optimal value, [they] will be kept and used to obtain promising
neighboring solutions” (Hansen and Mladenović, 2001). Further-
more, Amiri et al. (2010) conclude that VNS “is capable of escaping
from the local optima by systematic changes of the neighborhood
structures during the search process”. VNS has shown promise in
various applications (cf., e.g., Ribeiro et al., 2008, or Perez-Gonzalez

and Framinan, 2010, as well as Hansen et al., 2010, for an overview).
To the best of our knowledge, VNS has never been used to solve
resource leveling or similar problems; therefore, this is a worthy
exploration.

Furthermore, we provide the following contributions to the
literature: a large-scale application case (as called for by Fink and
Voß, 2003) stemming from an aerospace company, a new tailor-
made construction heuristic combined with a randomized variable
neighborhood descent procedure that is capable of solving large-
scale problems, and a comparison to small instances solved by the
DIscrete and Continuous OPTimizer (DICOPT) within the General
Algebraic Modeling System (GAMS).

3. Problem definition and mathematical formulation

The central role of MP as defined in this paper is the temporal
and factual coordination of planning tasks (of different business
functions) in an HPPS. To determine a suitable MPS, all require-
ments, constraints, and interdependencies (inputs as well as
desired outputs) with other planning tasks have to be analyzed
in detail.

3.1. Problem analysis

At the time of planning, the “frozen” part of the rolling
planning horizon (cf., e.g., Bredström et al. (2011), or Vargas and
Metters (2011), on this topic) has to be fixed with respect to the
replenishment times of critical materials. Therefore, the MPS has
to be calculated long before assembly starts. In the case of the
aerospace company, this period is at least 9 months.

The final assembly of the machines is organized in a serial
assembly line with m assembly stages ai (i¼1, 2,…, m). Because of
the product and process characteristics discussed above, almost
every assembly task is manually executed by the workforce of each
stage; therefore, the workforce is the limiting resource. As plan-
ning occurs long before the actual assembly, the workforce level
can be adjusted before assembly starts. For this reason, we do not
represent a resource restriction as a constraint as usual; instead,
resource utilization is considered in the objective function (cf.
Section 3.2). This approach is used to increase planning flexibility.
Workforce availability is insofar restricted, as it depends on a
factory calendar that defines workdays and non-workdays (e.g.,
rest days, weekends, or factory vacation). As a consequence, a
time-dependent resource availability vector indicates whether the
workforce resource is available (on workdays) or not (on non-
workdays). Thus, a set ω containing all period indices of workdays
in the planning horizon can be specified, whereby all days and
workdays are indexed by t¼1, 2, …, T. This set is identical for all
assembly stages.

The number and type of (forecasted) orders representing the
machines to be assembled within the planning horizon is specified
by an order portfolio provided by the Sales Planning department.
Forecasts are necessary because customer orders are not available
at the time of planning. Table 1 presents such an order portfolio.

Table 1
Order portfolio and planning relevant data.

Profile a1 a2 a3 … am lNETj
Number of orders
with this profile

lNETj 1
rj 1 lNETj 2

rj 2 lNETj 3
rj 3 lNETj m

rj m

A 4 1.2 3 1.5 4 1.0 5 1.2 18 17
B 7 1.1 5 1.4 17 1.2 15 1.1 50 34
…
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The order portfolio consists of a defined number n of planned
orders oj (with j¼1, 2, …, n). Each of these planned orders has a
dedicated order profile representing a certain product type and a
basic product specification. The order profile defines the net lead-
time lNETji (processing time) that is required to process the assembly
of order j at assembly stage i and a workforce requirement factor rji
per assembly stage i that is constant over time. Here, the net lead-
time is given by a number of workdays; the total net lead-time of an
order j is denoted by lNETj . The order profile also contains a special
type of bill of materials that defines critical materials and compo-
nents for each assembly stage. Because of the long replenishment
lead-times these critical materials require special attention during
the planning process to achieve short customer delivery times. As
the calculated MPS determines the assembly start (SjiAω) and
completion dates (CjiAω) of each order at each assembly stage,
the procurement and/or production of these critical materials can
be scheduled before tangible customer specifications are available.
Therefore, the assembly start dates of an order specify material
supply deadlines for each assembly stage.

Due to the rolling planning approach, there may be a concentra-
tion of orders with short net lead-times at the end of the planning
horizon; these orders would be pushed backward from planning
step to planning step. To avoid this problem, a start date interval for
the first assembly stage is defined: Sj1A ½f psPH ; lpsPH�; 8 j. The first
possible period for allocation fpsPH is defined by the first workday of
the planning horizon, and the last possible start period for alloca-
tion lpsPH can be calculated using the end of the planning horizon T
and the longest net lead-time of all orders: lpsPH¼T⊝max flNETj j8 jg.
For the sake of readability, we define the symbols � and ⊝ as
operators that add or subtract a certain number of workdays to or
from a given date and return a new date. This date is always a
workday; if the number of workdays is equal to one, the new date
corresponds to the next or previous workday.

Given this planning environment, the lead-time minimization
and resource leveling objectives are addressed. With regard to the
former, note that the factory calendar has a significant impact on
the actual (gross) lead-time LACTj of an order j, such that
LACTj ¼ Cjm�Sj1þ1 and LACTji ¼ Cji�Sjiþ1. This effect of the factory
calendar on the actual lead-time is also illustrated in the upper
part of Fig. 1, while the resulting resource utilization is depicted in
the lower part. The strong impact of the factory calendar on the
actual order lead-times can be clearly observed in the case of the
aerospace company considered: the resulting gross lead-time
varies between 130% and 210% of the net lead-time. Because of
this effect by the factory calendar, the primary lead-time mini-
mization objective is supported using two constraints. The first
constraint is the “non-preemptive” constraint (cf. Blazewicz et al.,
2007; Pinedo, 2009); that is, interruptions within an assembly
stage are not allowed except in the case of non-workdays. The
second constraint is the “no-wait” constraint (id.), which prohibits
assembly interruptions between two successive assembly stages.
Consequently, the MPS is completely defined by the assembly start
dates of the first stage (Sj1) of all orders and their corresponding
profiles. These two additional constraints also affect the resource
leveling objective. Changing start dates to minimize actual lead-
times directly influences the resource utilization at all assembly
stages and can lead to utilization peaks. These peaks undermine
the resource leveling objective. For example, if order o3 starts
1 day earlier, the actual lead-time would be reduced to 4 days
(LACT3 3 ¼ 4), but a resource utilization peak would arise at assembly
station a1 (depicted by the black rectangle in Fig. 1). Generally,
shorter lead-times can be achieved if orders start in a way such
that they are completed in advance of factory vacations or
maintenance periods. However, such a schedule would lead to
an accumulation of start dates in certain parts of the planning
horizon and, thus, to undesired resource utilization.

According to this discussion and the results presented in
Section 5.3, there is a conflict between the two objectives that
has to be solved. This resolution is achieved by the multi-criteria
objective function presented in the following section.

3.2. Multi-criteria objective function

Based on the discussion in Section 2, the criteria used to
measure lead-time and resource leveling performance are now
described. The integration of both criteria into a single objective
function is also discussed.

The lead-time minimization objective is represented by a lead-
time deviation criterion that measures the deviation between the
net lead-time lNETj and the actual (gross) lead-time LACTj of an order:

LACTj � lNETj ð1Þ

Concerning the objective of resource leveling as defined by the
root of the sum of squared deviations from a desired value, the
direct influence of the desired value on the resulting resource
utilization can be observed. Based on this observation and the
discussion of work ranges by Roca et al. (2008), we extend their
“Full” work range concept by intervals Ii defined for each assembly
stage i and calculate the desired utilization value ui based on these
intervals. An interval Ii is defined by the first possible allocation
date (fpai), the last possible allocation date (lpai) of an assembly
stage i, the set of workday indices in each interval (ωI

i), and the
number of workdays (jωI

i j) in the interval:

f pai ¼
first workday in the planning horizon; if i¼ 1

f pa1 � min ∑
i�1

i′ ¼ 1
lNETji′ 8 j

��( )
; otherwise

8>><
>>:

lpai ¼
last workday in the planning horizon; if i¼m

lpam⊖min ∑
m

i′ ¼ iþ1
lNETji′ 8 j

��( )
; otherwise

8>><
>>:

Therefore, the optimal resource utilization ui of an assembly stage i
is defined as the mean resource utilization in the corresponding
interval.

ui ¼ ∑
n

j ¼ 1
lNETji rji= ωI

i

�� �� 8 i ð2Þ

To smooth resource utilization, the root of the sum of squared
deviations between the actual resource utilization Ui t (4) in period
t at assembly stage i and the optimal resource utilization ui (2) at
period t at assembly stage i is used as criterion (3). The squared
deviation in the following formula is used to penalize large
deviations and explicitly avoid utilization peaks.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
tAωI

i

ðUit�uiÞ2
s

ð3Þ

here, the actual resource utilization Ui t per period t and assembly
stage i is defined by the number of orders that have to be
processed in this period (Xi j t ¼ 1 if oi j is processed in period t,
0 otherwise) and the corresponding resource utilization factor ri j:

Uit ¼ ∑
n

j ¼ 1
Xjitrji 8 i; t ð4Þ

As stated above, it is necessary to integrate the lead-time mini-
mization (LT) and resource leveling (RL) objectives into a single
objective function. Therefore, we examined a large number of
adjustment components to normalize the objective values and to
be able to directly represent the decision maker's preference by a
weighting factor α. Here, it must be taken into account that the
adjustment components have to be independent of a single
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problem instance. Thus, no manual update of the adjustment
component is necessary. The result of these examinations is the
following objective function.

Min αU
1
n

∑
n

j ¼ 1

1

lNETj

z}|{LT adjustment

U ðLACTj � lNETj Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LT

þð1�αÞU 1
m

∑
m

i ¼ 1

1
ωI
i

�� ��Uui

zfflfflfflffl}|fflfflfflffl{RL adjustment

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

tAωI
i

ðUit�uiÞ2
s

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RL

ð5Þ

The results in Section 5.3 will show that the objective function
developed in this section is able to address both objectives; that is,
the objective function can minimize lead-times and achieve
resource leveling independent of a single problem instance and
with respect to the decision maker's preferences.

3.3. Mixed-integer non-linear formulation

To substantiate the constraints and objectives of the planning
problem at hand and to solve small instances using DICOPT, we
present a mixed-integer non-linear formulation as follows.Indices:

j index for orders Af1; :::;ng
i index for assembly stages Af1; :::;mg
t index for days Af1; : ::; Tg; including workdays and non-

workdays

Parameter:

J set of orders
I set of assembly stages
T length of the planning horizon
ωI
i set of workday indices in the possible allocation interval

of assembly stage i; ωI
i

�� ��:¼ cardinality of ωI
i

ui desired resource utilization of assembly stage i
lNETj i net lead-time (processing time) of order j on assembly

stage i
lNETj net lead-time of order j
lpaPH last possible start period at assembly stage one
f pai first workday that can be allocated at assembly stage i
lpai last workday that can be allocated at assembly stage i
rj i resource requirement factor of order j on assembly

stage i
α weighting factor

Variables:

Xjit ¼
1; if order j is processed on assembly stage i at period t

0; otherwise

(

Sjit ¼
1; if order j starts on assembly stage i at the beginning of period t
0; otherwise

(

Cji ¼ index of the last period in which order oj
is processed on assembly stage i

Objective function:

Min αU
1
n

∑
n

j ¼ 1

∑
m

i ¼ 1
∑
lpai

t ¼ f pai

Xjit

!
� lNETj

lNETj

þð1�αÞU 1
m

∑
m

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
lpai

t ¼ f pai ;tAωI
i

∑
n

j ¼ 1
Xjit Urji

 !
�ui

 !2
vuut

ωI
i

�� ��Uui
ð6Þ

Constraints:

∑
T

t ¼ 1; tAωI
i

Xjit ¼ lNETji 8 j; i ð7Þ

∑
t

t′ ¼ 1
Xjit′r ∑

t

t″ ¼ 1
Sjit″ UT 8 j; i; t ð8Þ

Fig. 1. MPS with three orders (two with profile A and one with profile B) and the resulting resource utilization.
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∑
T

t ¼ 1
Sjit ¼ 1 8 j; i ð9Þ

CjiZXjit Ut 8 j; i; t ð10Þ

∑
lpaPH

t ¼ 1; tAωI
1

Sj1t ¼ 1 8 j ð11Þ

∑
T

t ¼ 1
Xjit ¼ Cji� ∑

T

t′ ¼ 1
Sjit′ Ut′

� �
þ1 8 j; i ð12Þ

Cji�1þ1¼ ∑
T

t ¼ 1
Sjit Ut 8 j; i41 ð13Þ

Xjit ; SjitAf0;1g 8 j; i; t ð14Þ

CjiAZZ0 8 j; i ð15Þ
The first part of the combined multi-criteria objective function
(6) is responsible for minimizing lead-times, while the second part
addresses resource leveling. Constraint (7) ensures that the num-
ber of workdays that an order is processed at an assembly stage is
equal to the number of workdays given by the net lead-time of this
order at the corresponding assembly stage. Constraints (8) and
(9) set the start date (the first allocation on an assembly stage)
and constraint (10) sets the completion date of an order. The
adherence of the start date interval of assembly stage one is
assured by constraint (11). Constraint (12) prevents preemption at
an assembly stage. Constraint (13) represents the no-wait condi-
tion between two consecutive stations and assures the
proper sequence of assembly stages. Constraints (14) and (15)
restrict the domains of the decision variables.

4. Solution method

Due to the complexity of the planning problem at hand and the
requirement to solve virtually any size of problem, a solution
method is required that is robust in terms of solution quality and
efficient in terms of computation time. Therefore, we combine a
problem-specific construction heuristic with a local search heur-
istic based on the principles of VNS.

4.1. Construction heuristic

The basic idea behind this problem-specific heuristic is to
distribute all orders over the planning horizon equally. Hence,
the uninformed construction heuristic is called equal distribution
(EQD). The central requirement for the construction heuristic is
that, based on the given input data (order portfolio, planning
horizon, and factory calendar), all defined constraints must be
respected to calculate feasible solutions. The inputs for the
calculation of the initial solution are a list of order profiles
(opList[op, #]) with the number of orders (#) of each order profile
(op), the borders of the start day interval (fpsPH, lpsPH), and the
total number of orders (n). EQD consists of two main steps. At first,
n start dates with respect to the start date interval ½f psPH ; lpsPH � are
calculated. Then, orders are assigned to the start dates according to
their profile and the number of orders of each profile. The
following pseudocode illustrates the main course of action of EQD:

EQD (opList[op, #], fpsPH, lpsPH, n)

// generate start dates
sdr←getWorkdays
(fpsPH, lpsPH) / n

// calculation of a start date rhythm

S1 1←fpsPH // set first start date

for j←2 to n do
Sj 1←Sj�1 1 �

roundSD (j, sdr)
// set next start date

if Sj 14 lpsPH then
Sj 1←fpsPH

end if;

// if more orders than workdays in
the planning horizon has to be
planned

next;

// assign order profiles
sortDesc (opList [op, #]) // sort order profiles according to

non-increasing numbers #
opList [op, #, q]←getOPR
(opList[op, #])

// calculate order profile ratios q

assignOrders (opList
[1, #, q])

// assigns all orders of the first
profile to the earliest start dates

for z ←2 to total number
of order profiles do
for k ←1 to number of
orders of profile z do

insertOrders (k,
roundOP (opList
[z, #, q]))

// insert orders according to their
ratio

next;
next;

The first step of EQD is to generate start dates to which the orders
will be assigned in the second step. For this purpose, a start date
rhythm (sdr) is determined by dividing the number of work days
in the start date interval (getWorkdays) by the total number of
orders (n) that have to be planned. Then, beginning with the first
possible start date, all further start dates are calculated based on
the start date rhythm and a specific rounding function (roundSD).
This function is required because the start date rhythm is not
necessarily an integer value and standard rounding does not lead
to suitable results. On the one hand, always rounding down entails
an inappropriate start date distribution (not the full planning
horizon is used). On the other hand, always rounding up would
not guarantee that all orders start within the planning horizon.
Therefore, the aim of this rounding function is to round up as often
as possible to achieve, preferably, an equal distribution of start
dates over the whole planning horizon.

In the second step of EQD, order profiles are assigned to the
generated start dates. First, all order profiles are sorted according
to non-increasing numbers of occurrence (sortDesc), and the ratio
of occurrence times (q) of any order profile to the most frequent
order profile is then calculated (getOPR). Thereafter, the orders of
the most frequent order profile are assigned to the earliest
unallocated start dates (assignOrders). This assignment results in
a list of orders with start dates. Afterward, the remaining orders
are inserted into this list iteratively, according to the order profile
ratio (insertOrders). As these ratios are also not necessarily integer
values, another specialized rounding function has to be applied
(roundOP). The insertion of a new order into the list leads to a
shifting of all orders currently starting behind the actual insertion
position. By doing so, the different order profiles are distributed as
equally as possible over the planning horizon. These insertions are
executed until all orders of all profiles are assigned to start dates.

The time complexity of this deterministic heuristic depends on
the total number of orders n. Assuming that the time complexity of
the sorting algorithm is O(n log n), the time complexity of EQD is
determined by the last two nested for-loops and the inserting
procedure. Because inserting procedures have a complexity of O(n)
in most cases (depending on the data structure) and the insertion
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is called n�1 times at most (within the nested for-loops), the time
complexity of EQD is O(n2).

4.2. Improvement procedure

Generally, the metaheuristic VNS embeds a local search heur-
istic within a framework that uses changing neighborhood struc-
tures to explore local optima and escape from them (Hansen et al.,
2010). The main aspects of the application of VNS to specific
problems are – besides the local search procedure – the definition
and number of appropriate neighborhood structures, the order in
which these structures should be searched, and the strategy that
should be used for changing neighborhoods (Hansen and
Mladenović, 2001).

The first aspect is specifying transformation rules to obtain new
neighboring solutions. These transformation rules define the basis
for the local search procedure and the neighborhood structures. As
stated above, an MPS is completely determined by start dates and
assigned orders. Therefore, two possibilities to transform solutions
exist: swap the assigned orders with different profiles or alter the
start dates. Because many more combinations of start dates and
orders can be reached by altering start dates, we use start date
transformations to create neighboring solutions. Hence, the trans-
formation rules define a sequence of integers that determines the
number of workdays the start dates are shifted forward or back-
ward in time. All constraints still must be satisfied to ensure that
only feasible solutions are considered.

One possibility for building such a sequence of integers would
be 1, 2, 3, 4, …, T/2. This sequence will be referred to as “all”.
Another possibility, aimed at reducing the number of solutions in a
neighborhood and thus increasing the efficiency of the improve-
ment procedure, is to use Fibonacci numbers to define the integer
sequence (without the first two elements of the Fibonacci
sequence). Following Zeckendorf's theorem, every natural number
can be expressed as a sum of non-consecutive Fibonacci numbers
(for a mathematical proof, see Lengyel (2006)). Therefore, this
sequence provides a way to reach every other start date in the
start date interval in a finite number of moves. Starting with the
lowest Fibonacci number, all Fibonacci numbers embody two
transformation rules: one from adding and the other from sub-
tracting the Fibonacci number (in workdays) to or from a given
start date. The largest Fibonacci number specifying a neighbor
is the largest number that is smaller than half of the number of
workdays in the start date interval. For example, if there are
50 workdays, the sequence is defined by 1, 2, 3, 5, 8, 13 and 21.
To evaluate the two transformation sequences, the parameter
transRule is set to “all” for the simple sequence and to “fib” for
the Fibonacci numbers.

The neighborhood structures themselves are determined by the
number of start dates that will be changed simultaneously. The
first neighborhood structure performs separate start date shifts
(according to the transformation sequence) to a given set of start
dates. Thus, each start date is shifted and evaluated separately. The
second structure performs the transformations on all combina-
tions of two of the given start dates; the third structure, to all
combinations of three start date; and so on. The last structure
performs the transformation to all given start dates simulta-
neously. In this context, the parameter searchDir is used to control
the sequence in which the structures are evaluated: either starting
with the first structure (searchDir¼“asc”) or starting with the last
structure (searchDir¼“desc”).

Because the number of start dates in an MPS corresponds to the
number of orders in the order portfolio and this number could be
large depending on the problem instance, the number and size of
the neighborhood structures would increase rapidly. This increase
in the number and size of the neighborhood structures would lead

to a very time-consuming local search within a single neighbor-
hood structure. For this reason, the number and size of structures
is controlled by the parameter selSD that defines a certain number
of start dates that will be randomly selected from all available start
dates. For example, if selSD¼3, we obtain three structures: the first
structure contains three elements with single start dates, the
second structure contains three elements with two start dates
each, and the third structure contains a single element with all
three start dates. The local search procedure based on the
transformation rules is executed separately for each of these
elements. Depending on the improvement strategy (the manner
in which better solutions will be selected), a new solution will
become the incumbent solution. Generally, the strategies “best
improvement/steepest decent” and “first improvement/first des-
cent” can be applied. To compare both strategies, the parameter
impStrat can be set to “bi” and “fi”.

As we assume that the developed construction heuristic
achieves a high-quality initial solution and as we seek to further
reduce the computation time, we are not using an explicit shaking
mechanism that accepts solutions that are worse than the incum-
bent one. As a result, and because of the randomly selected start
dates, the proposed improvement procedure can be considered a
randomized Variable Neighborhood Descent (RandVND) method.
The main course of action of the procedure is described by the
following pseudocode:

RandVND (selSD, transRule, searchDir, impStrat, maxItwi,
maxIttotal)

// init
sn←EQD(…) // get initial solution
trList←prepTR (transRule, getWorkdays()) // prepare

transformation rules
// iterations
itwi←0, ittotal←0
l1: repeat

sdList←getRandomSD (selSD, sn) // select start dates
randomly

k←1
l2: repeat
// generate list of combinations
combList←getCombinations (k,
sdList, searchDir)
// get new solution by local search
s'←performLS (combList, trList,
impStrat, sn)
// set improved solution or change
the neighborhood
if getOV(s')ogetOV(sn) then

s*←s‘, k←1, itwi←0
exit l2;

else
←kþ1, itwi←itwiþ1
end if;

until k¼selSD ;
ittotal←ittotal þ1

until itwi¼maxItwi or ittotal¼maxIttotal ;

RandVND starts with the initial solution calculated by EQD and the
preparation of the transformation rules (prepTR). The first step of
the iterative part is the random selection of selSD start dates
(getRandomSD) from the incumbent solution s*. Within the inner
loop (l2), the elements of the current neighborhood structure
(k) are calculated (getCombinations) according to parameter
searchDir. Next, the local search procedure is executed (performLS),
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and depending on the improvement strategy (impStrat), a new
solution s' will be returned. If s' improves the incumbent solution
sn, sn will be replaced by s', and the next iteration of the outer
loop (l1) will be executed. Otherwise, the next neighborhood
structure will be explored. The procedure terminates whether
either the maximum number of total iterations or the maximum
number of iterations without improvement is reached.

The time complexity of an iteration of the inner loop of
RandVND depends on the parameters selSD, impStrat, and trans-
Rule. In the worst case, transRule is set to “all” and has a length of
T/2 and the improvement strategy is set to “bi” (all neighboring
solutions have to be evaluated). In this case, the time complexity is
given by O(2selSD), whereby selSD ⪡ T.

5. Experiments and results

All of the subsequently described experiments are carried out
within a comprehensive Microsofts Excel spreadsheet tool, which
contains EQD and RandVND (implemented in Visual Basic for
Applications) and several modules for the preparation of the data,
evaluation of the experiments, and visualization of the MPS and
the resource utilization. This spreadsheet tool is also used by the
aerospace company from which the planning problem originates.

To evaluate our solution method, we compare its performance
with the commercial solver DICOPT (cf. Kocis and Grossmann,
1989). DICOPT is capable of solving mixed integer non-linear
problems (MINLP) and is based on an extension of the outer-
approximation algorithm for equality relaxation proposed by
Varvarezos et al. (1992). The MINLP is decomposed into a con-
tinuous optimization sub-problem and a discrete optimization
master problem that are solved separately. The former can be
computed using any non-linear programming (NLP) solver, and
the latter can be solved by applying any mixed integer program-
ming (MIP) solver. We use CONOPT (introduced by Drud (1994)), a
generalized reduced-gradient algorithm involving sparse non-
linear constraints, for the NLP sub-problem and Gurobi for the
MIP master problem. All solvers mentioned are part of GAMS.

5.1. Application case and test instances

The first group of instances (named “ac-instances”) is based on
anonymized real-world data from an aerospace company. The
company is one of the world's leading companies in its sector and
manufactures an average of 120 high-end aircraft per year. Each
aircraft differs significantly in its functionality regarding commu-
nication, navigation, radar, and mission devices. The final assembly
considered is organized as a serial production line with 10 stages:
base unit and mechanical equipment, avionics systems, electronic
systems, system integration, system tests, engine and final
mechanical assembly, final electronic assembly, final avionics
assembly, system completion, and final tests. The aircrafts, which
are individually specified by the customers, can be categorized
into three types, represented by three basic types of order profiles.
The first type (“short profiles”) represents so-called pre-assembly
kits where only the first stages will be executed in the final
assembly regarded here and the other stages will be executed
elsewhere. Their net lead-times range between 12 and 18 work-
days. The second type (“middle profiles”) represents lightweight
types with limited mission equipment. The third type is highly
equipped (“long profiles”). The net lead-time of middle profiles
ranges between 30 and 40 workdays, and the net lead-time of long
profiles ranges between 50 and 60 workdays. These net lead-times
have led to a mean gross lead-time of 104.79 days over the past
few years. For every type, particular profiles have a “peak” lead-
time on the fourth assembly stage. Concerning the aerospace

company, the workforce requirement is identical for all profiles
and assembly stages, and therefore, rj i is set to one for all orders
and stages. To show the suitability of the planning method, the
order profiles are combined to 12 test instances that differ in the
order profile mix. The first and second application case instances
(AC1, AC2) only include profiles of middle length. AC2 includes
profiles with peaks. Instances AC3 and AC4 only consist of long
profiles. AC4 contains profiles with peaks. Instances AC5, AC6, and
AC7 include middle and long profiles. Instance AC6 includes only a
few profiles with peaks, while AC7 includes many profiles with
peaks. Instances AC8, AC9, and AC10 also contain short profiles;
AC9 includes a few profiles with peaks, and AC10 includes many
profiles with peaks. Instances AC11 and AC12 are completely
random. Each of these scenarios is evaluated with 80, 120, and
200 orders of certain profile types. Further data inputs are the start
and end of the planning horizon (365 days) and the factory
calendar of the company. Further details on these instances and
the order profiles can be found in the Appendix (Tables 7 and 8).

A second group of test instances (named “csb-instances”) is
used to establish the benchmark with the commercial solver.
These instances are based on the first two basic profile types
described above, but with reduced net lead-times (between 8 and
12 or 14 and 18 workdays), fewer assembly stages (5 or 8), and a
reduced planning horizon (30 or 45 days) to be solvable within a
reasonable amount of time using DICOPT (details about these
instances also can be found in the Appendix; Tables 9 and 10). For
this group of instances, the workforce requirement factors rj i are
derived from the net lead-time. Here, rj i is directly proportional to
the net lead-time (case A) or indirectly proportional (case B) and
calculated as follows:

rAji ¼ Minð1þ lNETji U0:05; 2Þ

rBji ¼ Maxð2� lNETji U0:05; 1Þ

As a result, there are 16 small test instances (csb1A, csb1B, csb2A,
csb2B, …, csb8B).

The third group of instances (named “ta-instances”) is adapted
from Taillard's flow shop sequencing instances (Taillard, 1993).
Instances ta005, ta015, ta025, ta035, ta045, and ta055 are selected.
The given processing times are adjusted by a factor of 0.1 to
generate appropriate net lead-times. The planning horizon is
defined as five times the mean net lead-time of all orders of an

instance (T ¼ 5U l
NET
j ). Again, the workforce requirements are set

for each instance for the two cases A and B, resulting in 12
instances (ta005A, ta005B, ta014A, ta014B, …, ta055B).

5.2. Experiment and parameter settings

To evaluate the proposed solution method, three different
groups of experiments based on the different problem instances
are performed. The first group uses the csb-instances to evaluate
the solutions obtained by RandVND compared to those obtained
by DICOPT. In addition, the computing efficiency is examined
while varying the flow control parameters transRule, searchDir,
and impStrat. The second group of experiments, based on the
ta-instances, is used to validate the results of the first group of
experiments and to analyze the computing efficiency in more
detail. The experiments in group two are all performed with
α¼0.5. Finally, the third group of experiments uses the
ac-instances to show the suitability of the solution method for
solving large problem instances efficiently, the independence of
the adjustment components of the objective function from a
specific problem instance, and the effectiveness of the weighting
factor α in representing the decision maker's preferences.
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As only the small csb-instances can be meaningfully compared
using the objective value, two additional criteria are introduced.
The first one addresses the objective of lead-time minimization
and is based on the sum of deviations from the actual lead-time
LACTj and the minimal lead-time LBESTj that can be achieved if order j
starts within ½f psPH ; lpsPH�. LBESTj differs from lNETj , as it depends on
the given factory calendar. Hence, a relative lower bound deviation
(rel. ΔLT) for the lead-time objective can be calculated as follows:

rel:ΔLT ¼ ∑
n

j ¼ 1
LACTj �LBESTj

 !
= ∑

n

j ¼ 1
LACTj ð16Þ

The second criterion is used to assess the resource leveling
objective and measures the absolute deviation from the mean
resource utilization:

ΔRL ¼ ∑
m

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

tAωI
i

ðUi t�uiÞ2
s

ð17Þ

Concerning the RandVND parameters selSD, maxItwi, and maxIttotal,
a large number of tests have shown that they can be derived from

the number of orders n in the following manner:

selSD¼
2; if no50
4; otherwise

(
;

maxItwi ¼ max fn=3; 20g;
maxIttotal ¼ max f15Un; 300g

These values have been shown to be most efficient in terms of
solution quality and computation time.

The solvers DICOPT, CONOPT, and Gurobi are parameterized
using default values aside from the following settings (details of the
parameters can be found in the solver documentation of GAMS):

5.3. Computational results

Before discussing the results in detail, it should be noted that in
this section all values calculated by RandVND are presented as
mean values (each based on seven experimental runs), all values in
columns with headings containing “rel.” are presented as percen-
tages, and computation times are presented in seconds (unless
otherwise specified).

The results of the first group of experiments are summarized in
Tables 3 and 4. The tables present the mean results for csb-
instances csb1A to csb4B and csb5A to csb8B, respectively. Each
table is separated into four groups of columns for different
weighting factors. The third row contains the results from DICOPT:
the objective value OV (calculated by (6)) and the two additional
criteria rel. ΔLT and ΔRL. The following rows show the relative

Table 2
Parameter settings for DICOPT, CONOPT, and Gurobi.

DICOPT reslim¼36,000 seconds; maxcycles¼50; stop¼0; threads¼0
CONOPT continue¼ 1
Gurobi optcr¼0.01; mipreslim¼3600 seconds

Table 3
Mean results for csb-instances csb1A–csb4B.

α 0.1 0.5 0.9 1

DICOPT OV rel. ΔLT ΔRL CT OV rel. ΔLT ΔRL CT OV rel. ΔLT ΔRL CT OV rel. ΔLT ΔRL CT

0.4219 0.04 500.1 10079 0.3504 0.02 150.9 713 0.3706 0.00 195.6 404 0.3771 0.00 550.7 311

RandVND rel. IOV rel. IΔLT rel. IΔRL CT rel. IOV rel. IΔLT rel. IΔRL CT rel. IOV rel. IΔLT rel. IΔRL CT rel. IOV rel. IΔLT rel. IΔRL CT

asc, FI, FIB 42.25 �4.99 78.16 4.0 �3.98 �2.46 12.40 4.3 �14.84 �3.37 29.79 3.5 �15.01 �3.23 75.96 3.4
asc, FI, ALL 42.25 �4.83 78.24 5.5 1.81 �0.10 9.98 6.9 �0.33 �0.10 33.47 7.8 �0.34 �0.07 72.76 7.3
asc, BI, FIB 38.52 �6.94 76.35 1.0 �19.48 �9.12 18.43 0.9 �39.30 �10.78 47.90 0.9 �45.57 �10.78 81.77 1.0
asc, BI, ALL 38.52 �6.94 76.35 1.3 �19.48 �9.12 18.43 1.4 �39.30 �10.78 47.90 1.0 �45.57 �10.78 81.77 1.3
desc, FI, FIB 42.66 �5.06 78.39 19.4 �0.85 �1.29 11.88 24.7 �4.63 �0.95 27.20 32.9 �5.59 �1.20 69.51 24.9
desc, FI, ALL 42.75 �4.88 78.51 32.9 1.93 0.01 9.42 44.0 �0.56 �0.01 27.96 40.1 �0.08 �0.02 70.32 39.0
desc, BI, FIB 42.69 �5.18 78.45 21.9 0.01 �1.05 12.31 30.2 �3.89 �0.74 24.57 33.7 �5.05 �1.09 70.31 26.2
desc, BI, ALL 42.81 �4.92 78.59 32.5 2.12 0.02 9.88 49.9 �0.68 0.00 27.08 39.7 0.00 0.00 70.20 37.9
RAND 31.92 �7.94 70.82 �25.46 �10.21 �1.66 �44.85 �12.10 34.16 �49.09 �11.72 77.17

Table 4
Mean results for csb-instances csb5A to csb8B.

α 0.1 0.5 0.9 1

DICOPT OV rel. ΔLT ΔRL CT OV rel. ΔLT ΔRL CT OV rel. ΔLT ΔRL CT OV rel. ΔLT ΔRL CT

0.2538 8.12 111.26 36,001 0.3465 4.60 114.65 36,001 0.4229 0.61 268.73 36,002 0.4223 0.00 528.73 36,001

RandVND rel. IOV rel. IΔLT rel. IΔRL CT rel. IOV rel. IΔLT rel. IΔRL CT rel. IOV rel. IΔLT rel. IΔRL CT rel. IOV rel. IΔLT rel. IΔRL CT

asc, FI, FIB 22.46 0.23 3.24 12 4.24 �0.64 0.04 13 �0.60 �0.13 26.80 16 �1.54 �0.42 41.13 13
asc, FI, ALL 23.23 0.41 4.34 28 4.59 �0.64 1.73 23 �0.49 �0.30 32.34 28 �1.60 �0.45 41.35 25
asc, BI, FIB 8.97 �1.19 �17.10 1 �8.06 �4.70 �11.29 1 �23.22 �8.70 60.34 1 �32.01 �9.31 75.12 1
asc, BI, ALL 8.97 �1.19 �17.10 2 �8.06 �4.70 �11.29 2 �23.22 �8.70 60.34 2 �32.01 �9.31 75.12 2
desc, FI, FIB 22.86 0.15 3.78 80 4.26 �0.72 1.40 77 �0.92 0.14 20.15 137 �1.29 �0.35 36.17 86
desc, FI, ALL 23.50 0.14 4.92 128 4.60 �0.62 2.03 153 �0.78 �0.28 29.42 181 �1.29 �0.35 37.51 165
desc, BI, FIB 22.81 0.22 3.77 72 4.26 �0.61 0.06 70 �0.75 0.10 22.89 110 �1.29 �0.35 37.66 88
desc, BI, ALL 23.38 0.32 4.48 122 4.69 �0.61 2.29 145 �0.65 �0.24 29.96 204 �1.33 �0.37 38.72 167
RAND �0.22 �1.51 �41.00 �12.45 �4.98 �31.84 �25.08 �8.97 53.56 �33.66 �9.62 70.89
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improvements rel. IOV, rel. IΔLT, and rel. IΔRL of RandVND with
different settings for searchDir, impStrat, and transRule and the
randomly generated solutions (RAND; 100 solutions per instance)
compared to the solutions calculated by DICOPT. The last column
in each group depicts the mean computation times (CT) Table 2.

The results presented in Tables 3 and 4 show that the proposed
solution method (neglecting settings “asc”, “bi”, “fib” and “asc”,
“bi”, “all”) is superior compared to the results achieved by random
sampling. Due to their poor performance, the two settings men-
tioned in the parenthetical above are also neglected in the
following analysis.

The results produced by DICOPT are questionable in terms of
achieving the resource leveling objective when α¼0.1 and for csb-
instances csb1A–csb4B (cf. Table 3). In contrast, if α¼1, then
DICOPT is able to achieve the best possible lead-time LBESTj (rel.
ΔLT¼0). Altogether, DICOPT achieves its best results with α¼0.5
and is able to solve the MPS problemwith the non-linear objective
function in a suitable manner. Table 4 shows that DICOPT behaves
as expected (with regard to the different weighting factors) and
that it always reaches the defined computation time limit.

The results suggest that RandVND outperforms DICOPT with
respect to the resource leveling objective (rel. IΔRL between 9.42%
and 78.59% in Table 3 and between 0.04% and 41.35% in Table 4). In
addition, RandVND performs sufficiently well in computing the
smaller instances csb1A to csb4B (rel. IΔLT between �5.18% and
0.02% in Table 3) and very well in computing instances csb5A to
csb8B (rel. IΔLT between �0.72% and 0.41% in Table 4). Regarding
the last observation, the computation time performance of
RandVND is analyzed in more detail, as it is of special importance:
the csb-instances are very small, and the computation time
increases disproportionally with the size of the problem instance.
Parameters searchDir¼“asc”, impStrat¼“fi” and transRule¼“fib”
perform comparatively well considering the improvement of the
relative deviation of the objective value (rel. IOV) and the two other
criteria; however, the performance is especially impressive in
terms of the computation time. The benefit of using transforma-
tion rules based on Fibonacci numbers can be observed when
comparing the computation times. The solution quality for criteria
rel. IOV, rel. IΔLT, and rel. IΔRL are almost identical, but the
computation times are significantly shorter compared to the
simple integer sequence.

Because the search direction “asc” outperforms “desc” in terms
of the computation time, the following results focus on the
difference between the two transformation rule integer
sequences.

The results in Table 5 show that the computation time
advantages of the Fibonacci integer sequence increase

significantly with the size of the problem instance. A comparison
of the objective values in Table 5 across the different resource
requirement calculation rules shows that nearly the same objec-
tive value is achieved in both cases (A and B). This result suggests
that the adjustment factors are suitable for different problem
instances.

The computation times (on an Intels Core™ i7-2600 CPU @
3.40 GHz with 16 GB RAM) presented in Table 6 highlight the
importance of the computation time criterion for selecting the
most suitable RandVND settings.

These computation times seem to be adequately short, espe-
cially concerning the level of planning, frequency of planning, and
size of the ac-instances.

The lead-time and resource leveling performance as a function
of α is illustrated in Fig. 2. The opposite trends of the curves for the
lower bound criteria clearly show the effectiveness of α in
controlling the tradeoff between the two objectives; thus, α is a
suitable representation of the decision maker's preferences. The
figure also visualizes the conflict between the two objectives.
Focusing on the objective of lead-time minimization would lead to

Table 5
Results of the ta-instances with transRule¼“all” and transRule¼“fib”.

Inst. n m RandVND (“asc”, “fi”)

“fib” “all”

OV rel. ΔLT ΔRL CT OV rel. ΔLT ΔRL CT

ta005A 20 5 0.6812 13.05 46.70 47 0.6894 12.87 48.13 157
ta005B 20 5 0.6951 13.75 63.86 42 0.6994 13.34 65.69 230
ta015A 20 10 0.7434 15.50 95.04 192 0.7338 14.51 94.82 1012
ta015B 20 10 0.7577 16.03 131.73 149 0.7416 15.41 128.63 576
ta025A 20 20 0.7411 7.67 221.99 320 0.7370 6.86 223.13 5772
ta025B 20 20 0.7498 8.05 298.08 297 0.7350 6.75 295.53 3814
ta035A 50 5 0.6832 12.48 123.41 107 0.6632 12.04 118.75 338
ta035B 50 5 0.6948 13.16 165.22 69 0.6665 12.31 156.75 576
ta045A 50 10 0.6133 16.78 176.72 226 0.6003 15.91 173.28 2384
ta045B 50 10 0.6107 16.98 232.01 210 0.6044 15.77 235.84 1769
ta055A 50 20 0.5920 8.14 351.86 1159 0.5828 7.77 345.97 12,876
ta055B 50 20 0.5947 7.98 477.41 1503 0.5855 8.10 460.77 10,060

Table 6
Mean computation times (in min).

n/α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

80 41 48 48 39 45 49 60 60 85
120 85 84 79 77 85 93 105 102 144
200 138 154 158 157 171 193 198 224 313

Fig. 2. Lead-time and resource leveling performance depending on α (for ac-
instances).
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highly variable resource utilization; focusing on resource leveling
would greatly stifle the potential to reduce lead-times and, thus,
reduce capital commitments.

Concerning the primary objective of lead-time minimization, it
should be emphasized that with α¼0.9, the relative deviation in
lead-time (rel. ΔLT) can, on average, be reduced to 3.50% for all ac-
instances. In addition, the adjustment components of the objective
function work properly for all ac-instances.

Moreover, Fig. 2 provides the following non-predictable
insights. In the interval from α¼0.1 to α¼0.5, the lead-time
performance increases, while the resource leveling perfor-
mance is almost constant. In contrast, when α is greater than
0.8, both performance criteria behave as expected. Conse-
quently, the most reasonable interval ranges from α¼0.5 to
α¼0.8. Here, the resource leveling performance only decreases
slightly with increasing α, while the lead-time performance
increases significantly. This observation leads to the following
implications for management. Within this interval, the deci-
sion maker can define an α-value that adequately reflects his
preferences. If the decision maker is not able to specify his
preferences a priori, a small number of MPS could be calculated
(with α-values within this interval), and the most suitable one
could be selected. This interval provides a rule of thumb for
setting the initial α-value.

6. Conclusions

The general purpose of the multi-criteria MPS approach for
special purpose machinery presented is the temporal and factual
coordination of all dependent planning tasks to achieve the basic
goals cost reduction and customer satisfaction. In this context,
capital commitments, contractual penalties, and compensation
costs are of special interest. To minimize these costs, the objective
function combines lead-time minimization and resource leveling
objectives, and a weighting factor is used to balance the objectives
with respect to the decision maker's preferences. This objective
function combined with the underlying production system leads
to a new optimization problem that needs to be solved not only for
small problems but also for large real world problems. In this case,
the small problem sizes are solved by a commercial solver.
However, a tailor-made construction heuristic and a RandVND
procedure are developed to efficiently solve problems of virtually
all sizes. The computational results show that the implemented
solution method is able to solve the small instances with an
improvement of between �15.01% and 42.81% compared with the
objective values obtained by the commercial solver DICOPT. Even
large-scale problems (with 200 orders, 10 assembly stages, and a
planning horizon of 1 year) can be solved with a solution of
sufficient quality concerning both the lead-time and the resource

Table 7
Number of orders per order profile and scenario (ac-instances).

n Order profile

PT-S1 PT-S2-P PT-S3 PT-S4-P PT-M1 PT-M2 PT-M3-P PT-M4 PT-M5 PT-M6-P PT-L1 PT-L2-P PT-L3 PT-L4-P

AC1 80 20 20 20 20
120 30 30 30 30
200 50 50 50 50

AC2 80 13 13 14 13 13 14
120 19 19 22 19 19 22
200 32 32 36 32 32 36

AC3 80 40 40
120 60 60
200 100 100

AC4 80 20 20 20 20
120 30 30 30 30
200 50 50 50 50

AC5 80 13 13 13 13 14 14
120 20 20 20 20 20 20
200 32 32 32 32 36 36

AC6 80 11 11 3 11 11 3 12 3 12 3
120 16 16 6 16 16 6 16 6 16 6
200 25 25 12 25 25 12 26 12 26 12

AC7 80 8 8 8 8 8 8 8 8 8 8
120 12 12 12 12 12 12 12 12 12 12
200 20 20 20 20 20 20 20 20 20 20

AC8 80 10 10 10 10 10 10 10 10
120 15 15 15 15 15 15 15 15
200 25 25 25 25 25 25 25 25

AC9 80 9 2 9 2 8 8 2 8 8 2 9 2 9 2
120 12 4 12 4 12 12 4 12 12 4 12 4 12 4
200 20 7 20 7 19 19 8 19 19 8 20 7 20 7

AC10 80 4 4 4 4 8 8 8 8 8 8 4 4 4 4
120 6 6 6 6 12 12 12 12 12 12 6 6 6 6
200 10 10 10 10 20 20 20 20 20 20 10 10 10 10

AC11 80 4 11 7 5 4 3 2 3 6 9 9 12 5
120 10 15 8 2 12 6 3 13 7 5 12 15 12
200 22 24 16 21 3 10 18 9 2 23 6 7 16 23

AC12 80 4 2 4 8 6 2 7 5 5 12 4 9 12
120 1 3 7 12 16 13 8 4 14 7 16 12 7 0
200 16 17 15 20 21 19 16 6 12 16 8 1 11 22
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leveling criterion within a reasonable amount of time. Moreover,
the objective function and adjustment components are suitable for
very different problem instances. The results also reveal that the α-
value can adequately reflect the decision maker's preferences.
Furthermore, we provide a rule of thumb for selecting an appro-
priate initial weighting factor.

The application of the MPS approach by the aerospace
company has led to promising results. The developed Excel tool
supports the ability of responsible decision makers to express
and visualize their preferences and to balance the two objectives.
The operational use of the planning approach and its solution
methods has also shown that the results are robust to varying
input data.

Further research should address the improvement of the
proposed solution method and its competitiveness with other
methods, such as Simulated Annealing or Tabu Search. Another
research direction would be to analyze the effects of the resulting
temporal framework and resource utilization on dependent
planning tasks.

Appendix

See Appendix Tables 7–10.
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Table 10
Net lead-times per order profile and assembly stage (csb-instances).

Order profile lNETj
Assembly stage

a1 a2 a3 a4 a5 a6 a7 a8

S1 12 1 3 3 3 2
S2-P 12 1 2 2 5 2
M1 30 1 3 4 6 6 5 4 1
M2 32 2 5 5 5 5 5 3 2
M3-P 32 1 4 5 9 5 4 3 1

Table 8
Net lead-times per order profile and assembly stage (ac-instances).

Order profile lNETj
Assembly stage

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

PT-S1 12 1 3 3 3 2
PT-S2-P 12 1 2 2 5 2
PT-S3 18 1 3 4 5 3 2
PT-S4-P 18 1 3 3 7 3 1
PT-M1 30 1 3 4 6 6 5 4 1
PT-M2 32 2 5 5 5 5 5 3 2
PT-M3-P 32 1 4 5 9 5 4 3 1
PT-M4 38 2 4 5 6 6 5 4 3 2 1
PT-M5 40 2 3 6 7 6 4 5 4 2 1
PT-M6-P 40 2 3 5 12 5 3 3 3 2 2
PT-L1 50 3 4 6 7 7 7 6 5 3 2
PT-L2-P 50 2 4 4 10 6 6 6 6 4 2
PT-L3 60 3 6 8 8 7 8 6 7 4 3
PT-L4-P 60 3 5 6 13 7 6 6 7 4 3

Table 9
Number of orders per order profile and scenario (csb-instances).

Instance n m Order profile T

S1 S2-P M1 M2 M3-P

csb1 10 5 5 5 30
csb2 15 5 7 8 30
csb3 20 5 10 10 30
csb4 30 5 15 15 30
csb5 10 8 4 3 3 48
csb6 15 8 4 4 7 48
csb7 20 8 4 4 4 4 4 48
csb8 30 8 4 4 7 7 8 48
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